Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 56, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489089

RESUMO

A new member of the family Flavobacteriaceae (termed Hal144T) was isolated from the marine breadcrumb sponge Halichondria panicea. Sponge material was collected in 2018 at Schilksee which is located in the Kiel Fjord (Baltic Sea, Germany). Phylogenetic analysis of the full-length Hal144T 16S rRNA gene sequence revealed similarities from 94.3 to 96.6% to the nearest type strains of the genus Maribacter. The phylogenetic tree of the 16S rRNA gene sequences depicted a cluster of strain Hal144T with its closest relatives Maribacter aestuarii GY20T (96.6%) and Maribacter thermophilus HT7-2T (96.3%). Genome phylogeny showed that Maribacter halichondriae Hal144T branched from a cluster consisting of Maribacter arenosus, Maribacter luteus, and Maribacter polysiphoniae. Genome comparisons of strain Maribacter halichondriae Hal144T with Maribacter sp. type strains exhibited average nucleotide identities in the range of 75-76% and digital DNA-DNA hybridisation values in the range of 13.1-13.4%. Compared to the next related type strains, strain Hal144T revealed unique genomic features such as phosphoenolpyruvate-dependent phosphotransferase system pathway, serine-glyoxylate cycle, lipid A 3-O-deacylase, 3-hexulose-6-phosphate synthase, enrichment of pseudogenes and of genes involved in cell wall and envelope biogenesis, indicating an adaptation to the host. Strain Hal144T was determined to be Gram-negative, mesophilic, strictly aerobic, flexirubin positive, resistant to aminoglycoside antibiotics, and able to utilize N-acetyl-ß-D-glucosamine. Optimal growth occurred at 25-30 °C, within a salinity range of 2-6% sea salt, and a pH range between 5 and 8. The major fatty acids identified were C17:0 3-OH, iso-C15:0, and iso-C15:1 G. The DNA G + C content of strain Hal144T was 41.4 mol%. Based on the polyphasic approach, strain Hal144T represents a novel species of the genus Maribacter, and we propose the name Maribacter halichondriae sp. nov. The type strain is Hal144T (= DSM 114563T = LMG 32744T).


Assuntos
Flavobacteriaceae , Poríferos , Animais , Água do Mar , Fosfatidiletanolaminas/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Vitamina K 2/química , Ácidos Graxos/química
3.
Nat Commun ; 13(1): 5160, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056000

RESUMO

In the deep ocean symbioses between microbes and invertebrates are emerging as key drivers of ecosystem health and services. We present a large-scale analysis of microbial diversity in deep-sea sponges (Porifera) from scales of sponge individuals to ocean basins, covering 52 locations, 1077 host individuals translating into 169 sponge species (including understudied glass sponges), and 469 reference samples, collected anew during 21 ship-based expeditions. We demonstrate the impacts of the sponge microbial abundance status, geographic distance, sponge phylogeny, and the physical-biogeochemical environment as drivers of microbiome composition, in descending order of relevance. Our study further discloses that fundamental concepts of sponge microbiology apply robustly to sponges from the deep-sea across distances of >10,000 km. Deep-sea sponge microbiomes are less complex, yet more heterogeneous, than their shallow-water counterparts. Our analysis underscores the uniqueness of each deep-sea sponge ground based on which we provide critical knowledge for conservation of these vulnerable ecosystems.


Assuntos
Microbiota , Poríferos , Animais , Biodiversidade , Filogenia , Simbiose
4.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34787539

RESUMO

Strain Llam7T was isolated from microbial mat samples from the hypersaline lake Salar de Llamará, located in Taracapá region in the hyper-arid core of the Atacama Desert (Chile). Phenotypic, chemotaxonomic and genomic traits were studied. Phylogenetic analyses based on 16S rRNA gene sequences assigned the strain to the family Micromonosporaceae with affiliation to the genera Micromonospora and Salinispora. Major fatty acids were C17 : 1ω8c, iso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The cell walls contained meso-diaminopimelic acid and ll-2,6 diaminopimelic acid (ll-DAP), while major whole-cell sugars were glucose, mannose, xylose and ribose. The major menaquinones were MK-9(H4) and MK-9(H6). As polar lipids phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and several unidentified lipids, i.e. two glycolipids, one aminolipid, three phospholipids, one aminoglycolipid and one phosphoglycolipid, were detected. Genome sequencing revealed a genome size of 6.894 Mb and a DNA G+C content of 71.4 mol%. Phylogenetic analyses with complete genome sequences positioned strain Llam7T within the family Micromonosporaceae forming a distinct cluster with Micromonospora (former Xiangella) phaseoli DSM 45730T. This cluster is related to Micromonospora pelagivivens KJ-029T, Micromonospora craterilacus NA12T, and Micromonospora craniellae LHW63014T as well as to all members of the former genera Verrucosispora and Jishengella, which were re-classified as members of the genus Micromonospora, forming a clade distinct from the genus Salinispora. Pairwise whole genome average nucleotide identity (ANI) values, digital DNA-DNA hybridization (dDDH) values, the presence of the diamino acid ll-DAP, and the composition of whole sugars and polar lipids indicate that Llam7T represents a novel species, for which the name Micromonospora tarapacensis sp. nov. is proposed, with Llam7T (=DSM 109510T,=LMG 31023T) as the type strain.


Assuntos
Lagos/microbiologia , Micromonospora , Filogenia , Águas Salinas , Técnicas de Tipagem Bacteriana , Composição de Bases , Chile , DNA Bacteriano/genética , Clima Desértico , Ácido Diaminopimélico/química , Ácidos Graxos/química , Micromonospora/classificação , Micromonospora/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Curr Biol ; 31(8): R368-R370, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33905688

RESUMO

In 2016, the research ice-breaker Polarstern surveyed the submerged peaks of the permanently ice-covered Langseth Ridge, a tectonic feature comprising the Karasik seamount and two deeper seamount peaks, abutting the Gakkel ultra-slow spreading ridge (87°N 62°E to 85.5°N 57.4°E)1. A towed marine camera sled and a hybrid remotely operated vehicle revealed these peaks to be covered by a dense demosponge community, at first glance reminiscent of North Atlantic Geodia grounds (sensu2). Sponges were observed on top of a thick layer of spicule mat (Figure 1 and Video S1), intermixed with underlying layers of empty siboglinid tubes and bivalve shells, a substrate covering almost the entire seafloor. We observed trails of densely interwoven spicules connected directly to the underside or lower flanks of sponge individuals (Figure 1), suggesting these trails are traces of motile sponges. This is the first time abundant sponge trails have been observed in situ and attributed to sponge mobility. Given the low primary production in this permanently ice-covered region, these trails may relate to feeding behavior and/or a strategy for dispersal of juveniles. Such trails may remain visible for long periods given the regionally low sedimentation rates.


Assuntos
Camada de Gelo , Locomoção , Poríferos/fisiologia , Animais , Regiões Árticas
6.
mSystems ; 6(1)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563781

RESUMO

The marine bone biome is a complex assemblage of macro- and microorganisms; however, the enzymatic repertoire to access bone-derived nutrients remains unknown. The bone matrix is a composite material made up mainly of organic collagen and inorganic hydroxyapatite. We conducted field experiments to study microbial assemblages that can use organic bone components as nutrient source. Bovine and turkey bones were deposited at 69 m depth in a Norwegian fjord (Byfjorden, Bergen). Metagenomic sequence analysis was used to assess the functional potential of microbial assemblages from bone surface and the bone-eating worm Osedax mucofloris, which is a frequent colonizer of whale falls and known to degrade bone. The bone microbiome displayed a surprising taxonomic diversity revealed by the examination of 59 high-quality metagenome-assembled genomes from at least 23 bacterial families. Over 700 genes encoding enzymes from 12 relevant enzymatic families pertaining to collagenases, peptidases, and glycosidases putatively involved in bone degradation were identified. Metagenome-assembled genomes (MAGs) of the class Bacteroidia contained the most diverse gene repertoires. We postulate that demineralization of inorganic bone components is achieved by a timely succession of a closed sulfur biogeochemical cycle between sulfur-oxidizing and sulfur-reducing bacteria, causing a drop in pH and subsequent enzymatic processing of organic components in the bone surface communities. An unusually large and novel collagen utilization gene cluster was retrieved from one genome belonging to the gammaproteobacterial genus Colwellia IMPORTANCE Bones are an underexploited, yet potentially profitable feedstock for biotechnological advances and value chains, due to the sheer amounts of residues produced by the modern meat and poultry processing industry. In this metagenomic study, we decipher the microbial pathways and enzymes that we postulate to be involved in bone degradation in the marine environment. We here demonstrate the interplay between different bacterial community members, each supplying different enzymatic functions with the potential to cover an array of reactions relating to the degradation of bone matrix components. We identify and describe a novel gene cluster for collagen utilization, which is a key function in this unique environment. We propose that the interplay between the different microbial taxa is necessary to achieve the complex task of bone degradation in the marine environment.

7.
PLoS One ; 16(1): e0241095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33503057

RESUMO

Sponges produce distinct fatty acids (FAs) that (potentially) can be used as chemotaxonomic and ecological biomarkers to study endosymbiont-host interactions and the functional ecology of sponges. Here, we present FA profiles of five common habitat-building deep-sea sponges (class Demospongiae, order Tetractinellida), which are classified as high microbial abundance (HMA) species. Geodia hentscheli, G. parva, G. atlantica, G. barretti, and Stelletta rhaphidiophora were collected from boreal and Arctic sponge grounds in the North-Atlantic Ocean. Bacterial FAs dominated in all five species and particularly isomeric mixtures of mid-chain branched FAs (MBFAs, 8- and 9-Me-C16:0 and 10- and 11-Me-C18:0) were found in high abundance (together ≥ 20% of total FAs) aside more common bacterial markers. In addition, the sponges produced long-chain linear, mid- and a(i)-branched unsaturated FAs (LCFAs) with a chain length of 24‒28 C atoms and had predominantly the typical Δ5,9 unsaturation, although the Δ9,19 and (yet undescribed) Δ11,21 unsaturations were also identified. G. parva and S. rhaphidiophora each produced distinct LCFAs, while G. atlantica, G. barretti, and G. hentscheli produced similar LCFAs, but in different ratios. The different bacterial precursors varied in carbon isotopic composition (δ13C), with MBFAs being more enriched compared to other bacterial (linear and a(i)-branched) FAs. We propose biosynthetic pathways for different LCFAs from their bacterial precursors, that are consistent with small isotopic differences found in LCFAs. Indeed, FA profiles of deep-sea sponges can serve as chemotaxonomic markers and support the concept that sponges acquire building blocks from their endosymbiotic bacteria.


Assuntos
Organismos Aquáticos , Ácidos Graxos Insaturados/metabolismo , Geodia/metabolismo , Poríferos/microbiologia , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/metabolismo , Organismos Aquáticos/microbiologia
8.
mSystems ; 5(4)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788407

RESUMO

Few studies have explored the microbiomes of glass sponges (Hexactinellida). The present study seeks to elucidate the composition of the microbiota associated with the glass sponge Vazella pourtalesii and the functional strategies of the main symbionts. We combined microscopic approaches with metagenome-guided microbial genome reconstruction and amplicon community profiling toward this goal. Microscopic imaging revealed that the host and microbial cells appeared within dense biomass patches that are presumably syncytial tissue aggregates. Based on abundances in amplicon libraries and metagenomic data, SAR324 bacteria, Crenarchaeota, Patescibacteria, and Nanoarchaeota were identified as abundant members of the V. pourtalesii microbiome; thus, their genomic potentials were analyzed in detail. A general pattern emerged in that the V. pourtalesii symbionts had very small genome sizes, in the range of 0.5 to 2.2 Mb, and low GC contents, even below those of seawater relatives. Based on functional analyses of metagenome-assembled genomes (MAGs), we propose two major microbial strategies: the "givers," namely, Crenarchaeota and SAR324, heterotrophs and facultative anaerobes, produce and partly secrete all required amino acids and vitamins. The "takers," Nanoarchaeota and Patescibacteria, are anaerobes with reduced genomes that tap into the microbial community for resources, e.g., lipids and DNA, likely using pilus-like structures. We posit that the existence of microbial cells in sponge syncytia together with the low-oxygen conditions in the seawater environment are factors that shape the unique compositional and functional properties of the microbial community associated with V. pourtalesii IMPORTANCE We investigated the microbial community of V. pourtalesii that forms globally unique, monospecific sponge grounds under low-oxygen conditions on the Scotian Shelf, where it plays a key role in its vulnerable ecosystem. The microbial community was found to be concentrated within biomass patches and is dominated by small cells (<1 µm). MAG analyses showed consistently small genome sizes and low GC contents, which is unusual compared to known sponge symbionts. These properties, as well as the (facultatively) anaerobic metabolism and a high degree of interdependence between the dominant symbionts regarding amino acid and vitamin synthesis, are likely adaptations to the unique conditions within the syncytial tissue of their hexactinellid host and the low-oxygen environment.

9.
Sci Rep ; 9(1): 1999, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760820

RESUMO

Marine sponges are early-branching, filter-feeding metazoans that usually host complex microbiomes comprised of several, currently uncultivatable symbiotic lineages. Here, we use a low-carbon based strategy to cultivate low-abundance bacteria from Spongia officinalis. This approach favoured the growth of Alphaproteobacteria strains in the genera Anderseniella, Erythrobacter, Labrenzia, Loktanella, Ruegeria, Sphingorhabdus, Tateyamaria and Pseudovibrio, besides two likely new genera in the Rhodobacteraceae family. Mapping of complete genomes against the metagenomes of S. officinalis, seawater, and sediments confirmed the rare status of all the above-mentioned lineages in the marine realm. Remarkably, this community of low-abundance Alphaproteobacteria possesses several genomic attributes common to dominant, presently uncultivatable sponge symbionts, potentially contributing to host fitness through detoxification mechanisms (e.g. heavy metal and metabolic waste removal, degradation of aromatic compounds), provision of essential vitamins (e.g. B6 and B12 biosynthesis), nutritional exchange (especially regarding the processing of organic sulphur and nitrogen) and chemical defence (e.g. polyketide and terpenoid biosynthesis). None of the studied taxa displayed signs of genome reduction, indicative of obligate mutualism. Instead, versatile nutrient metabolisms along with motility, chemotaxis, and tight-adherence capacities - also known to confer environmental hardiness - were inferred, underlying dual host-associated and free-living life strategies adopted by these diverse sponge-associated Alphaproteobacteria.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Alphaproteobacteria/genética , Genoma Bacteriano/genética , Poríferos/microbiologia , Simbiose/genética , Alphaproteobacteria/classificação , Alphaproteobacteria/isolamento & purificação , Animais , Biodegradação Ambiental , Farmacorresistência Bacteriana/genética , Microbiota/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
10.
FEMS Microbiol Ecol ; 94(6)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29701776

RESUMO

Marine sponges are early-branched metazoans known to harbor dense and diverse microbial communities. Yet the role of the so far uncultivable alphaproteobacterial lineages that populate these sessile invertebrates remains unclear. We applied a sequence composition-dependent binning approach to assemble one Rhodospirillaceae genome from the Spongia officinalis microbial metagenome and contrast its functional features with those of closely related sponge-associated and free-living genomes. Both symbiotic and free-living Rhodospirillaceae shared a suite of common features, possessing versatile carbon, nitrogen, sulfur and phosphorus metabolisms. Symbiotic genomes could be distinguished from their free-living counterparts by the lack of chemotaxis and motility traits, enrichment of genes required for the uptake and utilization of organic sulfur compounds-particularly taurine-, higher diversity and abundance of ABC transporters, and a distinct repertoire of genes involved in natural product biosynthesis, plasmid stability, cell detoxification and oxidative stress remediation. These sessile symbionts may more effectively contribute to host fitness via nutrient exchange, and also host detoxification and chemical defense. Considering the worldwide occurrence and high diversity of sponge-associated Rhodospirillaceae verified here using a tailored in silico approach, we suggest that these organisms are not only relevant to holobiont homeostasis but also to nutrient cycling in benthic ecosystems.


Assuntos
Poríferos/microbiologia , Rhodospirillaceae/metabolismo , Simbiose/fisiologia , Animais , Carbono/metabolismo , Genoma Bacteriano/genética , Metagenoma , Metagenômica , Microbiota , Nitrogênio/metabolismo , Filogenia , Rhodospirillaceae/genética , Enxofre/metabolismo
11.
Environ Microbiol ; 20(2): 561-576, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29098761

RESUMO

Many marine sponges contain dense and diverse communities of associated microorganisms. Members of the 'sponge-associated unclassified lineage' (SAUL) are frequently recorded from sponges, yet little is known about these bacteria. Here we investigated the distribution and phylogenetic status of SAUL. A meta-analysis of the available literature revealed the widespread distribution of this clade and its association with taxonomically varied sponge hosts. Phylogenetic analyses, conducted using both 16S rRNA gene-based phylogeny and concatenated marker protein sequences, revealed that SAUL is a sister clade of the candidate phylum 'Latescibacteria'. Furthermore, we conducted a comprehensive analysis of two draft genomes assembled from sponge metagenomes, revealing novel insights into the physiology of this symbiont. Metabolic reconstruction suggested that SAUL members are aerobic bacteria with facultative anaerobic metabolism, with the capacity to degrade multiple sponge- and algae-derived carbohydrates. We described for the first time in a sponge symbiont the putative genomic capacity to transport phosphate into the cell and to produce and store polyphosphate granules, presumably constituting a phosphate reservoir for the sponge host in deprivation periods. Our findings suggest that the lifestyle of SAUL is symbiotic with the host sponge, and identify symbiont factors which may facilitate the establishment and maintenance of this relationship.


Assuntos
Bactérias Aeróbias/classificação , Poríferos/microbiologia , Animais , Bactérias Aeróbias/genética , Tipagem Molecular , Filogenia , RNA Bacteriano , RNA Ribossômico 16S , Simbiose
12.
mSystems ; 3(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30637337

RESUMO

Members of the widespread bacterial phylum Chloroflexi can dominate high-microbial-abundance (HMA) sponge microbiomes. In the Sponge Microbiome Project, Chloroflexi sequences amounted to 20 to 30% of the total microbiome of certain HMA sponge genera with the classes/clades SAR202, Caldilineae, and Anaerolineae being the most prominent. We performed metagenomic and single-cell genomic analyses to elucidate the functional gene repertoire of Chloroflexi symbionts of Aplysina aerophoba. Eighteen draft genomes were reconstructed and placed into phylogenetic context of which six were investigated in detail. Common genomic features of Chloroflexi sponge symbionts were related to central energy and carbon converting pathways, amino acid and fatty acid metabolism, and respiration. Clade-specific metabolic features included a massively expanded genomic repertoire for carbohydrate degradation in Anaerolineae and Caldilineae genomes, but only amino acid utilization by SAR202. While Anaerolineae and Caldilineae import cofactors and vitamins, SAR202 genomes harbor genes encoding components involved in cofactor biosynthesis. A number of features relevant to symbiosis were further identified, including CRISPR-Cas systems, eukaryote-like repeat proteins, and secondary metabolite gene clusters. Chloroflexi symbionts were visualized in the sponge extracellular matrix at ultrastructural resolution by the fluorescence in situ hybridization-correlative light and electron microscopy (FISH-CLEM) method. Carbohydrate degradation potential was reported previously for "Candidatus Poribacteria" and SAUL, typical symbionts of HMA sponges, and we propose here that HMA sponge symbionts collectively engage in degradation of dissolved organic matter, both labile and recalcitrant. Thus, sponge microbes may not only provide nutrients to the sponge host, but they may also contribute to dissolved organic matter (DOM) recycling and primary productivity in reef ecosystems via a pathway termed the sponge loop. IMPORTANCE Chloroflexi represent a widespread, yet enigmatic bacterial phylum with few cultivated members. We used metagenomic and single-cell genomic approaches to characterize the functional gene repertoire of Chloroflexi symbionts in marine sponges. The results of this study suggest clade-specific metabolic specialization and that Chloroflexi symbionts have the genomic potential for dissolved organic matter (DOM) degradation from seawater. Considering the abundance and dominance of sponges in many benthic environments, we predict that the role of sponge symbionts in biogeochemical cycles is larger than previously thought.

13.
ISME J ; 11(11): 2465-2478, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696422

RESUMO

Marine sponges are ancient metazoans that are populated by distinct and highly diverse microbial communities. In order to obtain deeper insights into the functional gene repertoire of the Mediterranean sponge Aplysina aerophoba, we combined Illumina short-read and PacBio long-read sequencing followed by un-targeted metagenomic binning. We identified a total of 37 high-quality bins representing 11 bacterial phyla and two candidate phyla. Statistical comparison of symbiont genomes with selected reference genomes revealed a significant enrichment of genes related to bacterial defense (restriction-modification systems, toxin-antitoxin systems) as well as genes involved in host colonization and extracellular matrix utilization in sponge symbionts. A within-symbionts genome comparison revealed a nutritional specialization of at least two symbiont guilds, where one appears to metabolize carnitine and the other sulfated polysaccharides, both of which are abundant molecules in the sponge extracellular matrix. A third guild of symbionts may be viewed as nutritional generalists that perform largely the same metabolic pathways but lack such extraordinary numbers of the relevant genes. This study characterizes the genomic repertoire of sponge symbionts at an unprecedented resolution and it provides greater insights into the molecular mechanisms underlying microbial-sponge symbiosis.


Assuntos
Bactérias/isolamento & purificação , Poríferos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Metagenômica , Microbiota , Filogenia , Poríferos/fisiologia , Simbiose
14.
Genome Announc ; 5(17)2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28450525

RESUMO

We report here four draft genome sequences belonging to clade F of the cyanobacterium "Candidatus Synechococcus spongiarum" of the marine sponge Aplysina aerophoba, which were collected from two nearby locations in the northern Adriatic Sea. The sequences provide the basis for within-clade comparisons between members of this widespread group of cyanobacterial sponge symbionts.

15.
Front Microbiol ; 7: 1751, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877161

RESUMO

Many marine sponges are populated by dense and taxonomically diverse microbial consortia. We employed a metagenomics approach to unravel the differences in the functional gene repertoire among three Mediterranean sponge species, Petrosia ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures were observed between sponge and seawater metagenomes with regard to microbial community composition, GC content, and estimated bacterial genome size. Our analysis showed further a pronounced repertoire for defense systems in sponge metagenomes. Specifically, clustered regularly interspaced short palindromic repeats, restriction modification, DNA phosphorothioation and phage growth limitation systems were enriched in sponge metagenomes. These data suggest that defense is an important functional trait for an existence within sponges that requires mechanisms to defend against foreign DNA from microorganisms and viruses. This study contributes to an understanding of the evolutionary arms race between viruses/phages and bacterial genomes and it sheds light on the bacterial defenses that have evolved in the context of the sponge holobiont.

16.
mBio ; 6(3): e00391-15, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26037118

RESUMO

UNLABELLED: The "Candidatus Synechococcus spongiarum" group includes different clades of cyanobacteria with high 16S rRNA sequence identity (~99%) and is the most abundant and widespread cyanobacterial symbiont of marine sponges. The first draft genome of a "Ca. Synechococcus spongiarum" group member was recently published, providing evidence of genome reduction by loss of genes involved in several nonessential functions. However, "Ca. Synechococcus spongiarum" includes a variety of clades that may differ widely in genomic repertoire and consequently in physiology and symbiotic function. Here, we present three additional draft genomes of "Ca. Synechococcus spongiarum," each from a different clade. By comparing all four symbiont genomes to those of free-living cyanobacteria, we revealed general adaptations to life inside sponges and specific adaptations of each phylotype. Symbiont genomes shared about half of their total number of coding genes. Common traits of "Ca. Synechococcus spongiarum" members were a high abundance of DNA modification and recombination genes and a reduction in genes involved in inorganic ion transport and metabolism, cell wall biogenesis, and signal transduction mechanisms. Moreover, these symbionts were characterized by a reduced number of antioxidant enzymes and low-weight peptides of photosystem II compared to their free-living relatives. Variability within the "Ca. Synechococcus spongiarum" group was mostly related to immune system features, potential for siderophore-mediated iron transport, and dependency on methionine from external sources. The common absence of genes involved in synthesis of residues, typical of the O antigen of free-living Synechococcus species, suggests a novel mechanism utilized by these symbionts to avoid sponge predation and phage attack. IMPORTANCE: While the Synechococcus/Prochlorococcus-type cyanobacteria are widely distributed in the world's oceans, a subgroup has established its niche within marine sponge tissues. Recently, the first genome of sponge-associated cyanobacteria, "Candidatus Synechococcus spongiarum," was described. The sequencing of three representatives of different clades within this cyanobacterial group has enabled us to investigate intraspecies diversity, as well as to give a more comprehensive understanding of the common symbiotic features that adapt "Ca. Synechococcus spongiarum" to its life within the sponge host.


Assuntos
Evolução Molecular , Genoma Bacteriano , Poríferos/microbiologia , Simbiose , Synechococcus/genética , Synechococcus/fisiologia , Animais , Bacteriófagos/fisiologia , Metionina/metabolismo , Antígenos O/imunologia , Complexo de Proteína do Fotossistema II/genética , Filogenia , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Synechococcus/classificação , Synechococcus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...